US 2006/0026353 Al

[0016] FIG. 6 illustrates the use of the local variable
pointers upon returning from a method; and

[0017] FIG. 7 illustrates a preferred embodiment of
cache-based data storage (including a “RAMset”) in the
JSM of FIG. 3;

[0018] FIG. 8 illustrates the mapping of a contiguous
block of main memory onto a RAMset;

[0019] FIG. 9 illustrates another mapping of a contiguous
block of main memory onto a RAMset;

[0020] FIGS. 10 and 11 illustrate the operation of the
RAMset in an overflow condition;

[0021] FIG. 12 illustrates the operation of the RAMset in
an underflow condition;

[0022] FIG. 13 illustrates a RAMset split into two por-
tions in accordance with a preferred embodiment of the
invention; and

[0023] FIG. 14 shows various states and the transitions
between states of the RAMset in accordance with embodi-
ments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0024] The following discussion is directed to various
embodiments of the invention. Although one or more of
these embodiments may be preferred, the embodiments
disclosed should not be interpreted, or otherwise used, as
limiting the scope of the disclosure, including the claims,
unless otherwise specified. In addition, one skilled in the art
will understand that the following description has broad
application, and the discussion of any embodiment is meant
only to be exemplary of that embodiment, and not intended
to intimate that the scope of the disclosure, including the
claims, is limited to that embodiment.

[0025] The subject matter disclosed herein is directed to a
programmable electronic device such as a processor having
memory in which “local variables” associated with a stack-
based language (e.g., Java) and pointers associated with the
local variables may be stored. The term “local variables”
refers to temporary variables used by a method that executes
on the processor. Multiple methods may run on the processor
and each method preferably has its own set of local vari-
ables. In general, local variables have meaning only while
their associated method is running. The stack-based lan-
guage may comprise Java Bytecodes although this disclo-
sure is not so limited. In Java Bytecodes, the notion of local
variables (“LVs”) is equivalent to automatic variables in
other programming languages (e.g., “C”) and other termed
variables in still other programming languages. This disclo-
sure, however, is not limited to Java, Java methods, and Java
local variables. The principles disclosed below are appli-
cable to any system that manages a stack and includes “put
block” and “pop block” operations to push a block of data
onto a stack or pop a block of data from a stack.

[0026] The following describes the operation of a pre-
ferred embodiment of such a processor in which the methods
and local variables may run and be used. Other processor
architectures and embodiments may be used and thus this
disclosure and the claims which follow are not limited to any
particular type of processor.

Feb. 2, 2006

[0027] The processor described herein is particularly
suited for executing JavaTM Bytecodes, or comparable
code. As is well known, Java is particularly suited for
embedded applications. Java is a relatively “dense” lan-
guage meaning that on average each instruction may per-
form a large number of functions compared to various other
programming languages. The dense nature of Java is of
particular benefit for portable, battery-operated devices that
preferably include as little memory as possible to save space
and power. The reason, however, for executing Java code is
not material to this disclosure or the claims that follow.

[0028] Referring now to FIG. 1, a system 100 is shown in
accordance with a preferred embodiment of the invention.
As shown, the system includes at least two processors 102
and 104. Processor 102 is referred to for purposes of this
disclosure as a Java Stack Machine (“JSM”) and processor
104 may be referred to as a Main Processor Unit (“MPU”).
System 100 may also include memory 106 coupled to both
the JSM 102 and MPU 104 and thus accessible by both
processors. At least a portion of the memory 106 may be
shared by both processors meaning that both processors may
access the same shared memory locations. Further, if
desired, a portion of the memory 106 may be designated as
private to one processor or the other. System 100 also
includes a Java Virtual Machine (“JVM”) 108, compiler 110,
and a display 114. The JSM 102 preferably includes an
interface to one or more input/output (“I/0”) devices such as
a keypad to permit a user to control various aspects of the
system 100. In addition, data streams may be received from
the I/O space into the JSM 102 to be processed by the JSM
102. Other components (not specifically shown) may be
included as desired. As such, while system 100 may be
representative of, or adapted to, a wide variety of electronic
systems, an exemplary electronic system may comprise a
battery-operated, mobile cell phone such as that shown in
FIG. 2. As shown in FIG. 2, a mobile communications
device includes an integrated keypad 412 and display 414.
The JSM 102 and MPU 104 noted above and other com-
ponents may be included in electronics package 410 which
may be coupled to keypad 410, display 414, and a commu-
nications transceiver (e.g., radio frequency (“RF”) circuitry)
416 which may be connected to an antenna 418.

[0029] Referring again to FIG. 1, as is generally well
known, Java code comprises a plurality of “Bytecodes”112.
Bytecodes 112 may be provided to the JVM 108, compiled
by compiler 110 and provided to the JSM 102 and/or MPU
104 for execution therein. In accordance with a preferred
embodiment of the invention, the JSM 102 may execute at
least some, and generally most, of the Java Bytecodes. When
appropriate, however, the JSM 102 may request the MPU
104 to execute one or more Java Bytecodes not executed or
executable by the JSM 102. In addition to executing Java
Bytecodes, the MPU 104 also may execute non-Java instruc-
tions. The MPU 104 also hosts an operating system (“O/S”)
(not specifically shown), which performs various functions
including system memory management, the system task
management that schedules the JVM 108 and most or all
other native tasks running on the system, management of the
display 114, receiving input from input devices, etc. Without
limitation, Java code may be used to perform any one of a
variety of applications including multimedia, games or web
based applications in the system 100, while non-Java code,
which may comprise the O/S and other native applications,
may still run on the system on the MPU 104.



